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Abstract 
This paper reports on the development of agent models with 
human-like performance characteristics for use in agent-based 
modeling and simulation. The goal of our effort is to develop a 
computational human agent model that can be incorporated into an 
agent-based simulation to evaluate the impact of new technologies, 
such as datalink technology, on the workload and situation 
awareness of air traffic controllers. To provide models of advanced 
airspace, domain and task knowledge must be integrated with 
human performance characteristics to achieve a specification of 
controller functionality. Our approach combines a task analysis, 
which provides a functional description of the domain, with a 
human performance architecture, from which detailed performance 
predictions can be made. This paper presents how a standard task 
analysis can be paired with a human performance model to 
generate behavior that approximates that of the human operator. 
This paper will also outline the issues of integrating human 
performance models into a large-scale distributed agent-based 
simulation.  
 
 
INTRODUCTION 
 
 Modeling and simulation have emerged as critical tools for 
the design and safety analysis of large-scale complex systems such 
as the National Airspace System (NAS) [1]. To be a useful design 
and analysis tool, simulation requires suitable element-level 
models, such as dynamic models of physical machines, to predict 
the evolution of complex interactions of the elements. While this 
approach has been successfully applied to physical system 
components, only recently have modeling and simulation of human 
behavior begun to be explored. Humans are integral system 
components and critical elements to the performance and safety of 
the large-scale complex systems. Human capabilities and 
limitations must be taken into account when developing 
procedures, interfaces, and systems. Therefore, system modeling 
and simulation will be more effective if it includes human 
characteristics as an essential feature.  
 Though the scientific understanding of human behavior is far 
from complete, current theories and findings have enabled 
successful modeling of human-computer interaction (HCI) [2]. 
However, this success has not generalized to the modeling and 

simulation of large-scale dynamic systems. In part this is because 
the development of computational human performance models 
requires spending a great deal of time, cost, and expertise on 
human cognition and behaviors. Also, human performance models 
typically execute in their own unique simulation environments. For 
widespread use it will be preferable to integrate human models into 
system simulations along with other system components. 
 In simulating large-scale complex systems agent-based 
modeling and simulation (ABMS) has proven to provide 
robustness and flexibility. Also, by combining multiple agents it is 
possible to observe emergent properties of interactive behavior [3]. 
Agent-based simulation integrates human-like agent models in a 
dynamic representation of their environments, which includes 
detailed models of the physical and technical systems. However, 
given the complexity of human performance models, creating the 
ability to interact with other simulation models can require 
signification adaptations. 
 Several recent studies have examined using such human 
performance models as agents in large-scale agent-based 
simulations to evaluate air transportation systems [4-6]. These 
human agent models drive high-level behaviors by applying 
domain knowledge. However, they do not attempt to model the 
capabilities and constraints on human performance. The recent 
developments in computational modeling of cognitive human 
agents provide a new scientific paradigm for addressing and 
understanding fundamental aspects of human behavior and 
cognition at the individual level and system level. Our goal is to 
extend the capability of human agent models by developing an 
agent that produces human-like behaviors. We have designed this 
agent for the evaluation of new advanced air transportation 
concepts. By capturing performance characteristics we believe it 
will be possible to estimate factors such as workload, multitasking, 
and operator throughput. 
 There are several issues in developing agent models of human 
behavior and cognition. First, the representation of human behavior 
and cognition must be able to provide insight into the impact of 
human performance on overall system performance to predict 
global consequences of system changes [7]. Second, agent models 
of human behavior and cognition must be able to be easily 
modified and quickly adapted to new situations. Existing human 
performance models typically require deep knowledge of human 
behavior and cognition and a great amount of time and efforts to 
develop a new human performance model for a specific domain of 
interest. Third, agent models of human behavior and cognition 
should be implemented in a computational architecture with the 
capability for representing the range of behavior found in complex 



task domains, and that can be be incorporated into a large-scale 
simulation environment to interact with other agents.  
  In this paper, we describe a framework for developing agent 
models to resolve those issues using Apex (Architecture for 
Procedure Execution) developed at NASA Ames [8]. Apex is 
designed for generating adaptive, intelligent human behavior in 
complex, dynamic environments such as the air transportation 
system. Apex incorporates many high-level aspects of cognition 
such as action selection under uncertainty, managing multi-tasking, 
and task interleaving. Apex includes a range of components for 
modeling, simulating and analyzing human behavior, so Apex 
makes it easier to create human performance models. By 
facilitating model development and modification Apex makes it 
possible to test a wide variety of procedures and interfaces and to 
examine the impact of new technologies such as data link on the 
overall performance and safety of the NAS. 
 Our approach combines a task analysis, which provides a 
functional description of the domain, with a human performance 
architecture, from which detailed performance predictions can be 
made. We have previously reported on a method that seamlessly 
links task analysis with elementary human performance 
components. This linkage is the basis for much of the usability of 
Apex. Before describing our air traffic control model, we briefly 
describe our approach to human performance modeling.  
 
 
APEX HUMAN AGENT MODELING 
 
 In modeling human performance, economy can be achieved 
by representing the human agent in terms of fundamental 
characteristics constant across situations. This aspect of the agent 
can be reused across domains. The model must also represent 
domain and procedural knowledge, typically represented in a task 
analysis. Our modeling approach draws on previous work [2, 9] 
that integrates task with human characteristics in a unified 
representation. This representation extends the task analysis by 
including a fundamental human resource architecture at the level 
of cognitive, perceptual, and motor (CPM) operators. 
 The task analysis consists of a hierarchical task 
decomposition based on the Goal, Operators, Methods, and 
Selection (GOMS) technique [2]. The resource architecture 
currently implemented is based on CPM-GOMS [10], an extension 
of GOMS. CPM -GOMS is a modeling method that combines a 
hierarchical task decomposition with a resource architecture. The 
GOMS analysis terminates in low-level Cognitive, Perceptual, and 
Motor operators. CPM -GOMS models have made accurate, zero-
parameter predictions about skilled user behavior in routine tasks. 
CPM -GOMS specifies the parallelism and timing of elementary 
cognitive, perceptual, and motor operators [11]. 
 The inclusion of a fixed processing architecture at this level of 
detail allows our agents to capture important characteristics of 
human performance that remain fixed across tasks and domains. 
Capturing resource demands is a crucial component of predicting 
how effectively displays and controls are designed, or how 
efficiently two concurrent tasks can be done. Resource allocation 
policy is central to learning how to perform in a task context, and 
the competition for limited resources determines how tasks are 
sequenced at a detailed level of performance. The method we 
describe is being applied to simulate the performance of a human 
operator for the purpose of evaluating new concepts of advanced 
air transportation system. 

 We have recently described an approach for automatically 
generating CPM-GOMS analyses using the Apex computational 
architecture [12]. The automation of CPM-GOMS in Apex makes 
it practical for the first time to derive detailed predictions of human 
performance with complex tasks and interfaces. We have focused 
initially on evaluating routine human-system interaction by 
predicting the time and resource demands of accomplishing 
common interface tasks.  
 
Apex Human Agent Architecture 
 In our approach performance on a task is constructed from 
elementary human cognitive, perceptual, and motor operators, 
whose characteristics are relatively constant across domains. Key 
to our success with the compositional approach has been the 
development of a method for automatically scheduling these 
elementary human resources, which was achieved using the Apex 
computational architecture. A high-level architecture of Apex is 
shown in Figure 1. 
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Figure 1. The Architecture of Apex 

   
 The modeling framework includes a Resource Architecture, 
an Action Selection Architecture, and a Procedure Library. The 
resource architecture defines the limited-capacity cognitive, 
perceptual, and motor components as shown in Figure 1. The 
action selection architecture coordinates the activity of the 
resources and applies knowledge in the form of procedures. The 
procedure library contains the knowledge the agent applies to 
perform in the target domain. All knowledge in Apex is in the form 
of procedures. Information about the world is input through 
perceptual processes, which have limited capacity. Incoming 
information is matched against the specifications of procedures in 
the procedure library. If conditions for a procedure are detected 
then the Action Selection Architecture schedules the steps of the 
procedure in accordance with the constraints specified below. 
 As discussed earlier the model combines the CPM-GOMS 
task analysis with the Apex computational architecture, which 
provides the underlying simulation framework. Apex is a software 
tool for creating, running and analyzing simulations of intelligent 
agents carrying out human-computer interaction tasks. Apex treats 
the problem of modeling behavior as a problem of scheduling an 
agent’s limited resources. The agent architecture incorporates a 
reactive planning and execution mechanism with integrated online 
resource scheduling and other capabilities needed to handle 



multiple tasks. Both the general capabilities of a reactive planner 
and the multitask management extensions specific to Apex have 
proven central in automating CPM-GOMS models. 
 The reactive planner recursively decomposes high-level goals 
into subgoals and primitive operators based on stored plans. It does 
not generate the goal hierarchy all at once. Instead, it waits until all 
preconditions associated with a given goal are satisfied before 
retrieving a plan to specify subgoals. Deferring goal decomposition 
until near execution time enables the planner to choose how to 
decompose (i.e. which procedure to use) with as much situation 
information as possible. This strategy is essential for tasks such as 
air traffic control where uncertainty about future world state is high 
and the need for careful deliberation, either to solve complex 
problems or to choose optimally from a wide range of possible 
solutions, is low. The reactive planner allows the Apex controller 
agent to be interrupted by voice communications or by alerts that 
signal the need for immediate action. 
 
Templates of Elementary Human Behaviors 
 Representing the human agent in terms of elementary 
cognitive, perceptual, and motor actions may allow generalization, 
but it increases the complexity and difficulty of constructing 
human performance models.  Modeling human performance at this 
level requires spending a great deal of time, cost, and expertise on 
human behaviors. 
 To facilitate model construction, we decompose a complex 
task into a set of templates, primitive task-level operations that 
represent the building blocks from which other task behavior will 
be constructed [13]. Templates incorporate a psychological theory 
of the cognitive, perceptual, and motor components of basic human 
activities and dependencies between these components. The choice 
of primitives and the method of combining basic cognitive, 
perceptual, and motor operations into larger behavior units are 
critical in constructing reusable and scaleable templates. For 
example, a template of move-and-click trackball action can be used 
to build models of other tasks.  
 In CPM -GOMS, the top -level goal is decomposed into 
subgoals down to the level of templates. Apex composes long 
behavioral sequences by interleaving the templates for successive 
behaviors. Composing behavioral sequences in this way from 
templates that describe fundamental task actions allows the model 
to easily simulate the overlapping of tasks characteristic of skilled 
human performance. Templates remove the burden of 
understanding and programming in the underlying cognitive 
architecture. Consequently, the use of templates could make 
cognitive modeling more accessible to a wider range of domain 
experts. Templates may allow modelers to easily incorporate 
existing models of generalized capabilities into models of more 
complex tasks. 
 The process in CPM-GOMS of producing a goal hierarchy by 
recursively applying methods to non-primitive goals (those that do 
not correspond to an operator) does not end at the level of 
templates. Instead, templates themselves are decomposed into 
simpler behavioral units, ending when leaf nodes of the hierarchy 
form a set of operator-level actions composed of elementary 
cognitive, perceptual, and motor activities. Thus, the task 
decomposition is carried out uniformly at all levels. By modeling 
these elementary behaviors we can develop a library of behaviors 
from which to construct larger behavioral sequences. In this way, 
we bridge the gap between the standard task analysis and a human 
performance model of some detail.  

 There are two issues that arise in this compositional approach: 
how templates are constructed, and how they are combined to 
produce extended behavioral sequences. We have previously 
reported a method of interleaving the elements of successive 
templates that provides excellent fits to observed data [12]. The 
details of this method are beyond the scope of this paper, but in 
brief, we have successfully fit data from human-computer 
interaction tasks including mouse-based automated teller 
simulations, typing, and computer aided design tasks. The method 
is currently being applied to shuttle cockpit procedures, airline 
cockpit procedures, and air traffic control operations.  
 Our compositional approach to simulating behavior relies on a 
theory of resources to predict concurrency, and on a software 
architecture to execute reactive plans. Concurrent operator 
execution occurs within and across templates. Within-template 
concurrency arises because cognitive, perceptual, and motor 
operators call on separate, independent resources. Between-
template concurrency arises from the interleaving of operators 
from different templates. The essence of the interleaving 
phenomenon is that the activities specified by a template do not 
use all resources all of the time; idle time (slack) in the use of a 
resource by one template’s operators represents an opportunity for 
operators from a later template to “slip back” and begin execution.  
Interleaving at the level of CPM-GOMS operator-level goals 
corresponds to overlap in the execution of higher-level goals – i.e. 
at the level of templates or classic GOMS operators – and thus 
accounts for the different predictions of the CPM-GOMS and 
classic GOMS approaches. 
 In order to allow Apex models to participate in large-scale 
simulations of the national airspace system, we integrated Apex 
into the ACES (Advanced Concepts Evaluation System) 
simulation environment developing at NASA [14]. 
 
 
INTEGRATION OF APEX INTO ACES 
 
 In the Virtual Airspace Modeling and Simulation (VAMS) 
project, a joint NASA and FAA effort, modeling and simulation 
methods are being applied to evaluate the effect of changes in the 
operation of the national airspace. New concepts and technologies 
are being proposed as potential ways of increasing the capacity and 
safety of air transportation system. Several airspace concepts 
involve advanced automation on the ground communicating with 
automated systems onboard aircraft to negotiate clearances 
automatically. New automation under consideration would provide 
individual pilots and air traffic controllers more information about 
their situation, and help them in predicting near-future states of the 
airspace. VAMS is developing the modeling and simulation 
infrastructure that would allow the effect of these proposed 
changes to be evaluated.  
 To simulate novel airspace concepts VAMS has developed a 
new airspace simulation system, ACES. Briefly, ACES is a 
distributed agent-based event-driven simulation for the analysis of 
the NAS supporting common communications protocols. For the 
distributed simulation, ACES uses the High-Level Architecture 
(HLA) standard developed by the US Department of Defense 
(DOD) and the Run-Time Interface (RTI) available from the 
Defense Modeling and Simulation Office (DMSO) [14]. ACES 
provides key agent models for the NAS simulation, including 
aircraft, airport, Terminal Radar Approach Control (TRACON), 
Air Route Traffic Control Center (ARTCC), Airline Operations 
Center (AOC), and weather. These different types of agents are 



interacting with each other through message passing during the 
simulation. ACES models the dynamic behavior of different 
aircraft types, as well as the procedures and communications 
agents such as aircraft and air traffic control. In its current build, 
ACES represents agents at a level that abstracts over individual 
humans and human-system interfaces. Since an important goal for 
us is to evaluate such interfaces, we model the entire joint human-
system, and use the combined output to control an ACES agent. 
 In this research, a simple Apex human agent model for air 
traffic controller was developed to perform the functions of an 
individual air traffic controller in the simulation. A human-like 
agent must meet a set of functional requirements that derive from 
the role it will play in the simulation, and from our desire to 
closely match human behavior. One of practical issues was how to 
integrate these two different simulation systems to run seamlessly 
together. Apex is written in Lisp while ACES is a Java-based 
simulation system. To enable communication between these two 
systems written in different programming languages we developed 
communications interfaces and protocols using sockets. For 
example, the Apex controller agent communicates with ACES 
agents through a TCP/IP socket channel as shown Figure 2. 
Conceptually, ACES is responsible for all vehicles, air space 
entities, and the simulation environment. Apex is responsible for 
interpreting the simulation world and controlling the aircraft, as a 
human controller does. 
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Figure 2. Integration of Apex into ACES  
 
 The Apex-ACES Interface (AAI) translates simulated 
displays and vehicle information into the representation used by 
Apex and translates Apex’s action representation into ACES 
function calls (e.g., to control the vehicle and to manipulate 
sensors, radios, and displays). To control the vehicle’s motion 
Apex issues output commands to a corresponding ACES agent. 
AAI converts the output commands to OpenCybele message 
format, which can then be interpreted by other agents in the 
simulation. Currently, control of a vehicle occurs through setting 
the desired state of the vehicle such as its speed, heading, and 
altitude. 
 Apex is used to model both the human agent and the displays 
and controls the agent interacts with. In this way, timing of agent 
actions and delays imposed by the equipment and user interface 
can be simulated at high fidelity. Communication with the ACES 
simulation will occur at synchronized message passing times in 
accordance with ACES protocols. This arrangement is depicted in 
Figure 2. This scheme provides a natural division between the 

human performance model and the ACES-level agent. The ACES 
incorporates objects that represent high-level agents. The Apex 
agent need only transmit to its ACES counterpart those messages 
of significance in the larger context. Thus, while each keystroke of 
data entry into flight computers must be simulated to predict the 
time, the ACES-level agent need only be informed when the 
keystrokes produce some change in the its state, such as activating 
a mode, or changing a control setting. 
 
 
AIR TRAFFIC CONTROL TASK ANALYSIS  
 
 Our Apex agent functions as an air traffic controller who 
controls traffic in a single enroute sector. At present, ground based 
air traffic control installations have responsibility for routing of 
aircraft and maintenance of safe separation between aircraft. There 
are three principle types of installation: tower, TRACON, and 
enroute. Tower control handles surface operations including take-
off and landing. TRACON handles arrival and departure sectors 
for airports. Enroute handles the remainder of the flight between 
departure and arrival sectors. A controller in the ATC 
environment, for instance, monitors the ongoing flights, responds 
to various pilot requests, and adjusts to weather conditions by 
instructing pilots to alter their aircraft speed, flight levels, and 
often headings in order to maintain safe and efficient flow of air 
traffic throughout the airspace control sectors. Other entities 
modeled in the ACES simulation include the airline operating 
centers, which are run by each airline and provide schedule and 
gate information to their own aircraft, and the aircraft themselves. 
Previous work has attempted to provide a more or less complete 
functional analysis of enroute [15]. Those have not yet been turned 
into workable computational agents. Some progress toward a 
complete controller agent has begun, but the controller’s task is a 
complex mixture of spatial, geometric, temporal, and procedural 
reasoning. No software agent has yet been able to handle more 
than a portion of the entire task though progress in applying rule-
based systems has yielded agents with some capability.  
 We have begun our agent development by focusing on the 
task of enroute controllers, following existing task analyses [16, 
17]. A high level functional analysis of a portion of current enroute 
control is shown in Figure 3. Each sector is managed by two 
controllers, the radar controller (R-side) and the radar associate 
controller (D-side), whose duties complement and overlap. The R-
side controller is the primary controller in contact with aircraft. 
The D-side controller assists, sharing responsibility for conflict 
detection and planning, as well as performing routine 
housekeeping. It is apparent from Figure 3 and the earlier 
discussion that an individual controller is an agent among airspace 
entities. Each individual agent shares responsibility for ensuring 
safe operations, but those responsibilities are themselves divided. 
For example, the aircrew is primarily responsible for the safety of 
their aircraft, the controller for the safety of all aircraft in his/her 
sector. In addition to the formal rules for controllers (as well as 
aircrew) there exist informal practices. These informal rules have 
not been exhaustively studied, but are apparent in the behavior of 
controllers. They represent social contracts between entities that 
have emerged with time. Because of reciprocity, many informal 
rules act for the general good of all players.  For example, 
controllers will try to manage the traffic in their sector so that they 
do not overburden the downstream controller to whom they hand 
the traffic off. This cooperative behavior may not apply if they are 
busy. 
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Figure 3. High-Level Tasks of Enroute Controllers 
  
 We developed a simple model of this procedure in Apex using 
observed times for the interaction of the various agents involved. 
As shown in Figure 3, the tasks of air traffic controllers require 
multi-tasking capability. For example, situation monitoring task is 
performed in parallel with other tasks, as are handoffs. However, 
in our Agent model, tasks that require the same resources such as 
radio, trackball, or keyboard, can temporarily prevent parallel 
execution. For example, a controller can visually detect two 
handoffs simultaneously, but the controller can only accept one 
handoff at a time because the task requires the same resource, the 
use of trackball. This illustrates how the resources in our Apex 
controller agent capture capabilities and constraints on human 
behavior, which have consequences for overall performance. 
 Typically R-Side controllers initiate handoff when an aircraft 
reaches a trigger location (e.g. 30nm from boundary of next sector) 
and the receiving controller accepts a handoff before an aircraft 
enters his sector. Once a handoff is accepted, the transferring 
controller issues a frequency change clearance before the aircraft 
leaves his control sector. The details of this Transfer of 
Communications (TOC) differ for voice or datalink, and this 
difference is of interest in assessing the impact of datalink. Then 
flight crew will tune new frequency and make an initial contact to 
receiving controller in next sector. Figure 4 shows the high-level 
tasks of controllers for initiating and receiving handoffs. 
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Figure 4. Task Analysis for a Handoff Task 
  
 The hierarchical goal structure of a GOMS model is 
expressed in Apex using its Procedure Description Language 
(PDL). PDL steps are decomposed hierarchically into procedures 
of simpler steps until those steps bottom out in primitive actions 
that occupy human resources. Figure 5 shows high-level PDL 
procedures for the handoff task that decompose into low-level 
procedures as shown in Figure 6. 
 
 

 
Figure 5. High-Level Task Procedures for Enroute Controller 
 
 
 

(procedure  
 (index (detect initiating handoff ?aircraft)) 
 (step s1 (decide whether to initiate handoff ?aircraft)) 
 (step s2 (initiate handoff ?aircraft to next controller) 
               (waitfor ?s1)) 
 (step s3 (monitor response from receiving controller)   
               (waitfor ?s2)) 
 (step s4 (issue frequency change to pilot) (waitfor ?s3)) 
 (step s5 (mark ac shipped) 
               (waitfor ?s4 (pilot readback))) 
 (step done  (terminate) (waitfor ?s5))) 
 
(procedure 
 (index (receive handoff request for ?ac-symbol)) 
 (step s1 (acquire sa for handoff ac)) 
 (step s2 (determine response) (waitfor ?s1)) 
 (step s3 (respond to initiating controller ?ac-symbol)    
               (waitfor ?s2)) 
 (step s4 (wait for initial contact from pilot)  
               (waitfor ?s3)) 
 (step done (terminate) (waitfor ?s4))) 
 



 
Figure 6. Template-Level Procedures for Enroute Controller 
 
 
SUMMARY 
 
 We have described the use of human agent models in agent-
based simulation as a mechanism for analyzing large-scale 
complex systems, such as the advanced air transportation system. 
We illustrated this by showing a simple agent model of air traffic 
controller for handoff using a CPM-GOMS task analysis integrated 
into the Apex computational architecture. The Apex agent interacts 
with a distributed agent-based simulation (ACES), making it 
possible to analyze the impact of changes of human behavior on 
the overall system performance. We are exploring the use of the 
model to evaluate new technologies for air traffic control.  
 As agent technologies and distributed simulation techniques 
advance, the use of simulated human agent models is expected to 
provide increased benefits for system design and analysis. 
However, several practical issues in integrating high-fidelity 
human performance models into a large-scale simulation must first 
be resolved. In particular, methods of synchronizing each agent’s 
time advance with other agents, and the computational demands of 
the human agent must be more fully worked out.  
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(procedure 
 (index (initiate handoff ?ac-symbol to receiving controller)) 
 (step s1 (move-cursor-to ?ac-symbol)) 
 (step s2 (click trackball on ?ac-symbol) (waitfor ?s1)) 
 (step done  (terminate) (waitfor ?s2))) 
 
(procedure 
 (index (move-cursor-to ?target)) 
 (profile right-hand) 
 (step s1 (trackball-time ?target => ?time)) 
 (step s2 (start -activity right-hand moving-ic-trackball 
     :object ?target :duration ?time => ?a) 
       (waitfor ?s1)) 
 (step s3 (terminate) (waitfor (completed ?a)))) 
 
(procedure 
 (index (click trackball on ?target)) 
 (profile right-hand) 
 (step s1 (trackball-object => ?object)) 
 (step s2 (start -activity right-hand clicking-trackball  
             :object ?object :ac-symbol ?target :duration 200 => ?a) 
       (waitfor ?s1)) 
 (step s3 (terminate) (waitfor (completed ?a)))) 


